Software-Intensive Systems Producibility Initiative

Mr. Robert Gold
Associate Director, SW and Embedded Systems
Director, Defense Research and Engineering (DDR&E)

Mr. Tom McGibbon

Defense Analysis Center for Software (DACS)

STATES O

DoD Software is Growing in Size and Complexity

Total Onboard Computer Capacity (OFP)

Source: "Avionics Acquisition, Production, and Sustainment: Lessons Learned -- The Hard Way", NDIA Systems Engineering Conference, Mr. D. Gary Van Oss, October 2002.

Software PRodUcibility Collaboration and Evaluation Environment (SPRUCE²)

- Managed by the Air Force
- Open collaborative research and development environment
 - Demonstrate, evaluate, and document the ability of novel tools, methods, techniques, and technologies
- Facilitate testing of Software-Intensive Systems Producibility research products and methods
- Provide a realistic environment for research of DoD embedded systems and software problems
- Provide an ability for university and industry leverage of technology development,
- Support successful technology transition and transfer
- Investigators will collaborate with major defense acquisition program developers as we as analyzing the utility of tools

Note: SPRUCE² is the new name for the Systems and Software Test Track (SSTT).

SPRUCE² Phase I Completed

- Defined Concept of Operations (CONOPS)
 - Facility characteristics for a proposed system from the users' viewpoint.
- Defined Architecture and the fundamental organization of the SPRUCE²
 - Components,
 - Their relationships to each other and the environment, and
 - Principles governing its design and evolution.

SPRUCE² Phase II Goals

- Implement the architecture of SPRUCE²
- Stand up the fundamental organization of SPRUCE²
- Begin experimentation
- Identify challenge problems that require research
 - Develop representative case studies

AF 2005 SBIR: Software Hub

SBIR Objective

Facilitate use of state-of-the-art analysis tools with commercial model-driven development tools

-Kestrel Technology LLC

- Develop architecture and hub language that support semantic integration of models
- Establish both as formal standards

-Reactive Systems, Inc.

- Collaborate with Kestrel Technology
- Develop translators between hub language and
 - Simulink® /Stateflow® modeling languages
 - SALSA analysis tool
 - Reactis® automated test generator

AF 2006 STTR: Error Handling Paths & Policies Analysis

STTR Objective

Approaches and tools to analyze existence, completeness, and adequacy of error handling policies and paths

GrammaTech, Inc.

- Analyze error behavior at component boundaries using machine code & file/socket format analysis
- Trace error propagation, flag policy violations, or uncontained errors

WW Technology Group

- Model-driven development of error-handling architecture based on SBIR-developed EDICT tool suite
- Tradeoff analysis of alternative architectures using multiple formalisms and stochastic & statistical approaches

Naval Research Lab Software-Intensive System Producibility S&T

- **Sage**. Methods and tools supporting agile, model-driven development of high assurance distributed agent-based systems
- **SOL**. Declarative specification language supporting automated synthesis of distributed agent-based systems
- **SALSA**. Static analysis tool establishes behavioral properties of **SOL**-like specifications
- **SINS.** Secure deployment, management, and communication infrastructure for distributed agents
- **Secure open source software.** Methods and tools facilitating adaptation, development, and/or assurance of open source software for DoD use.

Army Software Technologies for Interoperable Systems of Systems

- Develop and establish principles of interoperability and complexity management
 - Foundation for developing a service-oriented architecture for ultra large scale systems
- Two awards
 - UC Berkeley
 - Vanderbilt University

Army BAA – UC Berkeley

- Composition of systems based on
 - Integration technologies for legacy and custom subsystems that provide an understanding of the interaction of subsystems;
 - Scalable composition mechanisms for system-of-systems architectures;
 - Interface formalisms through which compatibility and properties of compositions can be determined from properties of the subsystems;
 - Ontology models for the organization of components together with a semantic type system for the data on which they operate; and
 - Hybrid models for designing and analyzing the dynamics of subsystem interactions with their physical environment

Army BAA – Vanderbilt U

- Enable system architects and integrators in creating large-scale SOA-based systems on MANETs
 - "Model-based tools for Service Architectures on Mobile Ad hoc Networks." (MOSAMAN)
- Emphasis on model-based approaches
 - Service Oriented Architecture middleware and
 - Applications on Mobile Ad hoc Network platforms
- Results and deliverables include
 - Domain-specific modeling environments
 - Analysis tool chains, and
 - Architecture analysis tradeoffs

Future Activities

- Navy-led new start in FY2008
- Completion of the National Academy of Sciences study
 - "Advancing Software Intensive Systems Producibility"
- SISPI and ULS Technology Focus Team
 - Technology Roadmap
 - Industry Summit
 - Recommendation for POM-10 investment
- Coordinate with National Science Foundation Cyber-Physical Systems initiative

Software-Intensive System (SIS) Producibility

Program Overview

Enable DoD to develop and affordably acquire software for large-scale, complex, embedded and net-centric systems by providing innovations in technologies, tools and techniques

- Invigorate DoD software research and provide dedicated efforts to demonstrate and transition improvements to acquisition programs
- Issues:
 - Software is an integral part of advanced warfighting systems but owing to technology shortfalls, DoD software-intensive acquisitions experience serious inefficiency, cost/schedule overruns, and critical failures
 - Trends in software size and complexity grow exponentially

Project Structure

- Projects to be funded with POM-08 Request
 - Software and Systems Development Focused Research Centers
 - ➤ Software and Systems Test Track
 - > Transition

Program Objectives

- Develop new technologies, tools and techniques that achieve 20% productivity improvement and 20% reduction in re-work by FY14
- Demonstrate impacts of technology improvements on representative acquisition program software artifacts
- Transition new technologies to software-intensive acquisition programs
- Milestones
 - Release BAA(s) Summer '06
 - Establish university/industry centers, research mid-'07
 - Software test track, 2007

Metrics/Benefit

- Long-Term measures
 - Improved affordability (improving trends in software cost and schedule from DoD 5000 SRDR*)
 - Reduced software re-work
 - Improved programmatic predictability
 - Increased industry productivity (SLOC/MM)
 - Decreased defect density (defects/1000SLOC)
- Will enable DoD to acquire software with reduced cost/schedule, increased quality, and avoid cost/schedule overruns by reducing rework

13

SISP Technology Ecosystem

Education
Training
Tools
Publications

Acq Prog Mgmt Test Warfighters

Integrators

Developers

Tool Vendors Stds Bodies

Start-ups

Champions/ Agents Open Source Industry Gurus

Research

Academia

Industry

Gov't Labs

NSF, NIST, DoD S&T

Opportunities for Progress

Toolo

Rules of Engagement	People	Product	Process & Proj mgmt	Technologies Techniques
Law Policy Business Models	Education Training Licensing Experience #'s	Existing code Libraries OS/Middleware DOTS GOTS COTS Product Lines	CMMI iCMM ISO 9000 Lean 6Sigma TOC	MDA Code Checkers Code generators Req'ts mgrs Visualization Etc.